Molecular electronic devices based on single-walled carbon nanotube electrodes.

نویسندگان

  • Alina K Feldman
  • Michael L Steigerwald
  • Xuefeng Guo
  • Colin Nuckolls
چکیده

As the top-down fabrication techniques for silicon-based electronic materials have reached the scale of molecular lengths, researchers have been investigating nanostructured materials to build electronics from individual molecules. Researchers have directed extensive experimental and theoretical efforts toward building functional optoelectronic devices using individual organic molecules and fabricating metal-molecule junctions. Although this method has many advantages, its limitations lead to large disagreement between experimental and theoretical results. This Account describes a new method to create molecular electronic devices, covalently bridging a gap in a single-walled carbon nanotube (SWNT) with an electrically functional molecule. First, we introduce a molecular-scale gap into a nanotube by precise oxidative cutting through a lithographic mask. Now functionalized with carboxylic acids, the ends of the cleaved carbon nanotubes are reconnected with conjugated diamines to give robust diamides. The molecular electronic devices prepared in this fashion can withstand and respond to large environmental changes based on the functional groups in the molecules. For example, with oligoanilines as the molecular bridge, the conductance of the device is sensitive to pH. Similarly, using diarylethylenes as the bridge provides devices that can reversibly switch between conjugated and nonconjugated states. The molecular bridge can perform the dual task of carrying electrical current and sensing/recognition through biological events such as protein/substrate binding and DNA hybridization. The devices based on DNA can measure the difference in electrical properties of complementary and mismatched strands. A well-matched duplex DNA 15-mer in the gap exhibits a 300-fold lower resistance than a duplex with a GT or CA mismatch. This system provides an ultrasensitive way to detect single-nucleotide polymorphisms at the individual molecule level. Restriction enzymes can cleave certain cDNA strands assembled between the SWNT electrodes; therefore, these strands maintain their native conformation when bridging the ends of the SWNTs. This methodology for creating novel molecular circuits forges both literal and figurative connections between chemistry, physics, materials science, and biology and promises a new generation of integrated multifunctional sensors and devices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integration of suspended carbon nanotube arrays into electronic devices and electromechanical systems

A synthetic strategy is devised for reliable integration of long suspended single-walled carbon nanotubes into electrically addressable devices. The method involves patterned growth of nanotubes to bridge predefined molybdenum electrodes, and is versatile in yielding various microstructures comprised of suspended nanotubes that are electrically wired up. The approach affords single-walled nanot...

متن کامل

Miniature organic transistors with carbon nanotubes as quasi-one-dimensional electrodes.

As the dimensions of electronic devices approach those of molecules, the size, geometry, and chemical composition of the contact electrodes play increasingly dominant roles in device functions. It is shown here that single-walled carbon nanotubes (SWNT) can be used as quasi-one-dimensional (1D) electrodes to construct organic field effect transistors (FET) with molecular scale width ( approxima...

متن کامل

A DFT study of interaction of folic acid drug on functionalized single-walled Carbon Nanotubes

In this work, the structural and electronic properties of folic acid molecule on functionalized (7,0)zigzag single-walled carbon nanotube was studied in gas phase on the basis of density functionaltheory (DFT). Furthermore, covalent interaction of folic acid with single-walled carbon nanotube wasinvestigated and its quantum molecular descriptors and binding energies were calculated. The DFTB3LY...

متن کامل

A First-Principles Study on Interaction between Carbon Nanotubes (10,10) and Gallates Derivatives as Vehicles for Drug Delivery

First principles calculations were carried out for investigation the novel 7-hydroxycoumarinyl gallates derivatives in gas and liquid phases using density functional theory (DFT) method. Computational chemistry simulations were carried out to compare calculated quantum chemical parameters for gallates derivatives. All calculations were performed using DMol3 code which is based on DFT. The Doubl...

متن کامل

Development and Fabrication of Carbon Nanotube (CNT) based Morphological and Electrical Characterization

This paper presents the development and fabrication of carbon nanotube (CNT) based sensor devices through morphological and electrical characterization. The silicon oxide (SiO2) as insulator is formed by dry oxidation process and Aurum (Au) layer is deposited using thermal evaporator. Then, the electrodes pattern is transferred by photolithography process. The single-walled carbon nanotubes (SW...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Accounts of chemical research

دوره 41 12  شماره 

صفحات  -

تاریخ انتشار 2008